再议 kprobe 机制

再议 kprobe 机制

在之前的博文《SystemTap Kprobe原理》中简要的对kprobe进行了介绍,Kprobe机制是内核提供的一种调试机制,它提供了一种方法,能够在不修改现有代码的基础上,灵活的跟踪内核函数的执行。

kprobe工作原理是:

1)在注册探测点的时候,将被探测函数的指令码替换为int 3的断点指令;

2)在执行int 3的异常执行中,CPU寄存器的内容会被保存,通过通知链的方式调用kprobe的异常处理函数;

3)在kprobe的异常处理函数中,首先判断是否存在pre_handler钩子,存在钩子则执行pre_handler;

4)进入单步调试,通过设置EFLAGS中的TF标志位,并且把异常返回的地址修改为保存的原指令码;

5)代码返回,执行原有指令,执行结束后触发单步异常;

6)在单步异常的处理中,清除标志位,执行post_handler流程,并最终返回执行正常流程;

Kprobe提供了三种形式的探测点,一种是最基本的kprobe,能够在指定代码执行前、执行后进行探测,但此时不能访问被探测函数内的相关变量信息;一种是jprobe,用于探测某一函数的入口,并且能够访问对应的函数参数;一种是kretprobe,用于完成指定函数返回值的探测功能。而jprobe与kretprobe都是基于kprobe实现的。

下面对kprobe代码简要分析:

在init_kprobes()初始化函数中,将kprobe注册到kprobe_exceptions_notify通知链


static int __init init_kprobes(void)
{
     ...
     err = arch_init_kprobes();
     if (!err)
        err = register_die_notifier(&kprobe_exceptions_nb);
     if (!err)
        err = register_module_notifier(&kprobe_module_nb);
 
     kprobes_initialized = (err == 0);
 
     if (!err)
       init_test_probes();
     return err;
}
static struct notifier_block kprobe_exceptions_nb = {
    .notifier_call = kprobe_exceptions_notify,
    .priority = 0x7fffffff /* we need to be notified first */
};

int __kprobes register_kprobe(struct kprobe *p)函数则是我们在内核模块中所调用的,经过对调用点一系列的检查,最后将将kprobe加入到相应的hash表内,并将将探测点的指令码修改为int 3指令: __arm_kprobe(p);


int __kprobes register_kprobe(struct kprobe *p) {
...
 INIT_HLIST_NODE(&p->hlist);
 hlist_add_head_rcu(&p->hlist,
        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
 
 if (!kprobes_all_disarmed && !kprobe_disabled(p))
     __arm_kprobe(p);
...

当内核调用到这个探测点时,触发int 3,经过中断处理,调用到do_int3() 函数,如果我们使能了CONFIG_KPROBES选项,那么跳入kprobe_int3_handler执行,该函数为kprobe的核心函数。


dotraplinkage void notrace do_int3(struct pt_regs *regs, long error_code)
{
...
#ifdef CONFIG_KPROBES
         if (kprobe_int3_handler(regs))
                 goto exit;
#endif
         if (notify_die(DIE_INT3, "int3", regs, error_code, X86_TRAP_BP,
                         SIGTRAP) == NOTIFY_STOP)
                 goto exit;
...
 exit:
         ist_exit(regs);
}
static int __kprobes kprobe_handler(struct pt_regs *regs)
{
...
    addr = (kprobe_opcode_t *)(regs->ip - sizeof(kprobe_opcode_t));
//对于int 3中断,那么异常发生时EIP寄存器内指向的为异常指令的后一条指令
    preempt_disable();
 
    kcb = get_kprobe_ctlblk();
    /*获取addr对应的kprobe*/
    p = get_kprobe(addr);
    if (p) {
//如果异常的进入是由kprobe导致,则进入reenter_kprobe
        if (kprobe_running()) {
            if (reenter_kprobe(p, regs, kcb))
                return 1;
        } else {
            set_current_kprobe(p, regs, kcb);
            kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 
            /*
             * If we have no pre-handler or it returned 0, we
             * continue with normal processing. If we have a
             * pre-handler and it returned non-zero, it prepped
             * for calling the break_handler below on re-entry
             * for jprobe processing, so get out doing nothing
             * more here.
             */
//执行在此地址上挂载的pre_handle函数
            if (!p->pre_handler || !p->pre_handler(p, regs))
//设置单步调试模式,为post_handle函数的执行做准备
                setup_singlestep(p, regs, kcb, 0);
            return 1;
        }
    } else if (*addr != BREAKPOINT_INSTRUCTION) {
...
    } else if (kprobe_running()) {
...
    } /* else: not a kprobe fault; let the kernel handle it */
 
    preempt_enable_no_resched();
    return 0;
}

setup_singlestep() 函数为单步调试函数,在该函数内会打开EFLAGS的TF标志位,清除IF标志位(禁止中断),并设置异常返回的指令为保存的被探测点的指令。


static void __kprobes setup_singlestep(struct kprobe *p, struct pt_regs *regs,
                 struct kprobe_ctlblk *kcb, int reenter)
{
    if (setup_detour_execution(p, regs, reenter))
        return;
...
    /*jprobe*/
    if (reenter) {
        save_previous_kprobe(kcb);
        set_current_kprobe(p, regs, kcb);
        kcb->kprobe_status = KPROBE_REENTER;
    } else
        kcb->kprobe_status = KPROBE_HIT_SS;
    /* Prepare real single stepping */
    /*准备单步模式,设置EFLAGS的TF标志位,清除IF标志位(禁止中断)*/
    clear_btf();
    regs->flags |= X86_EFLAGS_TF;
    regs->flags &= ~X86_EFLAGS_IF;
    /* single step inline if the instruction is an int3 */
    if (p->opcode == BREAKPOINT_INSTRUCTION)
        regs->ip = (unsigned long)p->addr;
    else
    /*设置异常返回的指令为保存的被探测点的指令*/
        regs->ip = (unsigned long)p->ainsn.insn;
}

setup_singlestep() 执行完毕后,程序继续执行保存的被探测点的指令,由于开启了单步调试模式,执行完指令后会继续触发异常,这次的是do_debug异常处理流程。然后在kprobe_debug_handler恢复现场,清除TF标志位等操作,完成kprobe调用。


dotraplinkage void do_debug(struct pt_regs *regs, long error_code)
{
...
#ifdef CONFIG_KPROBES
         if (kprobe_debug_handler(regs))
                 goto exit;
#endif
...
}
int kprobe_debug_handler(struct pt_regs *regs)
{
...
         resume_execution(cur, regs, kcb);
         regs->flags |= kcb->kprobe_saved_flags;
 
         if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
                 kcb->kprobe_status = KPROBE_HIT_SSDONE;
                 cur->post_handler(cur, regs, 0);
         }
 
         /* Restore back the original saved kprobes variables and continue. */
         if (kcb->kprobe_status == KPROBE_REENTER) {
                 restore_previous_kprobe(kcb);
                 goto out;
         }
         reset_current_kprobe();
...
}

总结一下kprobe流程就是下图:

###参考:

https://lwn.net/Articles/132196/ http://www.lxway.com/82244406.htm http://blog.chinaunix.net/uid-22227409-id-3420260.html